BASE理论

在讲述BASE理论之前我们首先要了解CAP理论,详情可参考CAP理论.Base理论是对CAP理论的进一步优化以满足大型分布式场景,更具有应用价值.

CAP权衡

通过CAP理论,我们知道无法同时满足一致性、可用性和分区容错性这三个特性,那要舍弃哪个呢?

对于多数大型互联网应用的场景,主机众多、部署分散,而且现在的集群规模越来越大,所以节点故障、网络故障是常态,而且要保证服务可用性达到N个9,即保证P和A,舍弃C(退而求其次保证最终一致性)。虽然某些地方会影响客户体验,但没达到造成用户流程的严重程度。

对于涉及到钱财这样不能有一丝让步的场景,C必须保证。网络发生故障宁可停止服务,这是保证CA。还有一种是保证CP,舍弃A。例如网络故障事只读不写。

孰优孰略,没有定论,只能根据场景定夺,适合的才是最好的。


BASE理论

eBay的架构师Dan Pritchett源于对大规模分布式系统的实践总结,在ACM上发表文章提出BASE理论,BASE理论是对CAP理论的延伸,核心思想是即使无法做到强一致性(Strong Consistency,CAP的一致性就是强一致性),但应用可以采用适合的方式达到最终一致性(Eventual Consitency)。

BASE是指基本可用(Basically Available)、软状态( Soft State)、最终一致性( Eventual Consistency)。

  • **基本可用:**基本可用是指分布式系统在出现故障的时候,允许损失部分可用性,即保证核心可用.
  • **软状态:**软状态是指允许系统存在中间状态,而该中间状态不会影响系统整体可用性。分布式存储中一般一份数据至少会有三个副本,允许不同节点间副本同步的延时就是软状态的体现。简单来说就是状态可以在一段时间内不同步.
  • **最终一致性:**系统中的所有数据副本经过一定时间后,最终能够达到一致的状态,不需要实时保证系统数据的强一致性。最终一致性是弱一致性的一种特殊情况。

BASE理论是C\A之间的权衡,BASE理论面向的是大型高可用可扩展的分布式系统,通过牺牲强一致性来获得可用性。ACID是传统数据库常用的概念设计,追求强一致性模型。简单来说就是在一定的时间窗口内, 最终数据达成一致即可。


最终一致性的分类

因果一致性(Causal consistency)

因果一致性指的是:如果节点A在更新完某个数据后通知了节点B,那么节点B之后对该数据的访问和修改都是基于A更新后的值。于此同时,和节点A无因果关系的节点C的数据访问则没有这样的限制。

读己之所写(Read your writes)

读己之所写指的是:节点A更新一个数据后,它自身总是能访问到自身更新过的最新值,而不会看到旧值。其实也算一种因果一致性。

会话一致性(Session consistency)

会话一致性将对系统数据的访问过程框定在了一个会话当中:系统能保证在同一个有效的会话中实现 “读己之所写” 的一致性,也就是说,执行更新操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。

单调读一致性(Monotonic read consistency)

单调读一致性指的是:如果一个节点从系统中读取出一个数据项的某个值后,那么系统对于该节点后续的任何数据访问都不应该返回更旧的值。

单调写一致性(Monotonic write consistency)

单调写一致性指的是:一个系统要能够保证来自同一个节点的写操作被顺序的执行。

在实际的实践中,这5种系统往往会结合使用,以构建一个具有最终一致性的分布式系统。

实际上,不只是分布式系统使用最终一致性,关系型数据库在某个功能上,也是使用最终一致性的。比如备份,数据库的复制过程是需要时间的,这个复制过程中,业务读取到的值就是旧的。当然,最终还是达成了数据一致性。这也算是一个最终一致性的经典案例。


参考内容:

https://my.oschina.net/foodon/blog/372703

https://juejin.im/post/5b2663fcf265da59a401e6f8


版权声明:本文为博主原创文章,欢迎转载,转载请注明作者、原文超链接,感谢各位看官!!!

本文出自:monkeyGeek

座右铭:生于忧患,死于安乐

欢迎志同道合的朋友一起交流、探讨!

monkeyGeek

评论

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×